Diboson Production and Drell-Yan Forward-Backward Asymmetry Measurements using the DØ Detector at Fermilab

John Ellison
University of California, Riverside
For the DØ Collaboration

Frontiers in Contemporary Physics III

Vanderbilt University

May 23-28, 2005

The Tevatron

- DØ data recorded to date ~ 0.7 fb⁻¹
- Results shown in this talk are based on ~ 150–320 pb⁻¹
- Expect $\sim 1 \text{ fb}^{-1} \text{ by Fall}$ 2005
- $\sim 4-8 \text{ fb}^{-1} \text{ by } 2009$

The DØ Detector

The WWy and WWZ Vertices

- Standard model U(1)_Y × SU(2)_L predicts existence of gauge boson self-interactions
- Direct measurement:
 - Demonstrate SM predictions are correct, or not...
 - Use as probe of new physics
- Effective Lagrangian
 parametrization of new physics in terms of coupling parameters
 - SM tree-level values:

$$g_1^V = 1$$
 $\left(\Delta g_1^V \equiv g_1^V - 1 = 0\right)$
 $\kappa_V = 1$ $\left(\Delta \kappa_V \equiv \kappa_V - 1 = 0\right)$
 $\lambda_V = 0$

 Unitarity violation avoided by use of form factor

$$a(\hat{s}) = \frac{a_0}{\left(1 + \hat{s}/\Lambda_{FF}^2\right)^2}$$
 $\begin{cases} \hat{s} = \text{subprocess CM energy} \\ \Lambda_{FF} = \text{form factor scale} \\ \text{related to scale of new physics} \end{cases}$

$$W$$
 W
 W
 $V (= \gamma \text{ or } Z)$

$$L_{WWV} / g_{WWV} = i \frac{g_1^V}{W_{\mu\nu}^1} \left(W_{\mu\nu}^\dagger W^\mu V^\nu - W_\mu^\dagger V_\nu W^{\mu\nu} \right)$$

$$+ i \frac{\lambda_V}{m_W^2} W_{\mu\nu}^\dagger W_\nu V^{\mu\nu}$$

$$+ i \frac{\lambda_V}{m_W^2} W_{\nu\nu}^\dagger W_\nu^\mu V^{\nu\lambda}$$

$$+ \text{CP-violating terms}$$

 WW_γ couplings related to magnetic dipole and electric quadrupole moments of the W

$$\mu_{W} = \frac{e}{2m_{W}} \left(1 + \kappa_{\gamma} + \lambda_{\gamma} \right)$$

$$Q_W^e = -\frac{e}{m_W^2} \left(\kappa_{\gamma} - \lambda_{\gamma} \right)$$

Expectations for Couplings

• Expected values of WW γ couplings in SM and some models beyond the SM

Model	$ \Delta \kappa_{\gamma} $	$ \lambda_{\gamma} $	$ ilde{\kappa}_{\gamma} $
standard model	0.008 [33, 34]	0.002 [34]	$10^{-22} [35, 36]$
$2\mathrm{HDM}$	$0.016\ [37]$	$0.0014\ [37]$	-
Multi-doublet	_	-	$4 \times 10^{-6} \ [38, 35]$
${ m E}6$	$2.5 imes 10^{-5} \ [39]$	$0.003\ [39]$	-
SUSY	$0.005\ [40]$	$5 \times 10^{-5} \ [40]$	$3 \times 10^{-4} \ [41]$
TC	$0.002\ [42]$	-	$7 imes 10^{-6} \; [42]$
4th generation	-	-	$5 \times 10^{-3} \; [43]$

- See JE and J. Wudka, hep-ex/9804322

Diboson Production

- Effect of anomalous couplings:
 - Increased diboson production cross section
 - Increased boson transverse momentum in diboson production
- Cross sections in the standard model at 1.96 TeV:

$$\sigma(W\gamma \rightarrow l\nu\gamma) = 16 \text{ pb*}$$

 $\sigma(Z\gamma \rightarrow ll\gamma) = 3.9 \text{ pb*}$
 $\sigma(WW) = 13 \text{ pb}$
 $\sigma(WZ) = 3.7 \text{ pb}$

*
$$E_{T}^{\gamma} > 8 \text{ GeV}, \Delta R(I_{\gamma}) > 0.7$$

 Diboson production is an important background in many high-p_T analyses

e.g.
$$H \rightarrow WW$$
, top, trileptons

Wγ Production

- Probes WWγ vertex
- Main background is from W + jet production; jet mimics a photon
- Radiative decays suppressed by requiring $E_T^{\gamma} > 8$ GeV, $\Delta R(l\gamma) > 0.7$

W_γ Production

- Event selection $\int Ldt = 162 (e), 134(\mu) \text{ pb}^{-1}$
 - High p_⊤ electron or muon
 - Missing $E_T > 25,20 \text{ GeV}$
 - Isolated photon with
 - $E_T > 8 \text{ GeV}, |\eta| < 1.1$
 - $\Delta R(I\gamma) > 0.7$
- Background estimation
 - W + jet events from data
 - Probability for a jet to be misidentified as a photon
 - Estimated from multijet events in data
- SM predictions: Baur and Berger MC generator + parametrized detector simulation

Channel	е	μ
N _{obs}	112	161
N_{bkg}	60.8 ± 4.5	71.3 ± 5.2
N_{obs} - N_{bkg}	51.2 ± 11.5	89.7 ± 13.7

Transverse Mass (Wγ) DØ Run II Data (e + μ channels) Sum of Backgrounds Sum of Backgrounds 20 10 Dota (e + μ channels) Sum of Backgrounds

100

200 25 M_T(W, γ) GeV/c²

Results: W_γ Cross Section, WW_γ Couplings

• Measured cross sections for W γ production with E $_T$ > 8 GeV and $\Delta R(I\gamma)$ > 0.7:

$$σ(Wγ → eνγ) = 13.9 ± 2.9 (stat)$$
 $± 1.6 (syst) ± 0.9 (lum) pb$
 $σ(Wγ → μνγ) = 15.2 ± 2.0 (stat)$
 $± 1.1 (syst) ± 1.0 (lum) pb$

Combined Result:

$$\sigma(W\gamma \rightarrow l\nu\gamma) = 14.8 \pm 1.6 \text{ (stat)}$$
$$\pm 1.0 \text{ (syst)} \pm 1.0 \text{ (lum)} \text{ pb}$$

Standard Model (Baur and Berger):

$$\sigma(W\gamma \rightarrow l\nu\gamma) = 16.0 \pm 0.4 \text{ pb}$$

 Limits on couplings obtained from likelihood fit to photon E_T spectrum

• 95% CL 1-d limits for $\Lambda_{FF} = 2$ TeV:

$$-0.88 < \Delta \kappa_{\gamma} < 0.96$$

 $-0.20 < \lambda_{\gamma} < 0.20$

W_γ Radiation Zero

- Radiation zero in all helicity amplitudes for W_{γ} production in SM
 - For $u\overline{d} \rightarrow W^+ \gamma$, amplitudes vanish for $\cos \theta = -1/3$
 - θ = scattering angle of photon w.r.t. quark direction in W_γ rest frame
 - Corresponds to dip at $\eta(\gamma) \eta(1^+) \approx -0.4$

- In practice, zero is partially filled in
 - Effects of pdf's, higher-order QCD corrections, final state photon radiation

Wide n coverage essential;
 extend for electrons and photons in future

WW Cross Section

WW production

$$p\overline{p} \rightarrow W^+W^- \rightarrow \ell^+\nu\ell^{\prime-}\nu^{\prime}$$

in three decay modes: ee, μμ, eμ

- Selection
 - $\int Ldt = 252 (ee), 224 (\mu\mu), 235 (e\mu) \text{ pb}^{-1}$
 - Two oppositely charged leptons with $p_T > 15 \text{ GeV}$
 - At least one with $p_T > 20 \text{ GeV}$

- Additional selection based on
 - Missing E_T, m_T, Δ φ(jet, \not{E} _T), Δ φ(μ,μ), Σ E_T^{jet}, Z mass window
- Good agreement of data with SM WW production + backgrounds
- Monte Carlo
 - PYTHIA + parametrized detector simulation

WW Cross Section Results

Channel	ee	μμ	еµ
N _{obs}	6	4	15
$oldsymbol{N}_{bkg}$	2.30 ± 0.21	1.95 ± 0.41	3.81 ± 0.17
N _{WW(SM)}	3.42 ± 0.05	2.10 ± 0.05	11.10 ± 0.10

- Probability of background fluctuation is very low: 5.2σ
- Measured cross section

$$\sigma(p\overline{p} \to W^+W^-) =$$

$$13.8^{+4.3}_{-3.8}(\text{stat})^{+1.2}_{-0.9}(\text{syst}) \pm 0.9(\text{lum}) \text{ pb}$$

- Good agreement with NLO calculations 12.0-13.5 pb
 - Ohnemus/Campbell and Ellis

WZ Production

- Sensitive to WWZ vertex
 - cf. WW production, which depends on WWZ and WWγ
 - Allows study of WWZ coupling parameters with *no assumptions* about WW_γ couplings
- SM cross section is 3.7 pb
- WZ → lv l⁺l⁻ mode is clean and unambiguous
 - But has low branching fraction 1.5%
- WZ → Iv jj mode has larger branching fraction (15%)
 - But cannot distinguish WZ from W+jets, WW

WZ → Trileptons

- Event selection
 - $\int Ldt = 320 (evee), 290 (\mu vee)$ $280 (ev\mu\mu), 290 (\mu v\mu\mu) \text{ pb}^{-1}$
 - 3 charged leptons $p_T > 15$ GeV, missing $E_T > 20$ GeV, M_Z window
- Candidates:
 - 2 μν μμ events, 1 ev ee event

- Total estimated background
 = 0.71 ± 0.08
 - Z+jet background estimated from dilepton + jet events and P(j → e), P(j → µ)
 - Other backgrounds are from Zγ,ZZ, and ttbar

Results and Limits on WWZ Coupling

- events to fluctuate to three or more candidates is 3.5%
 - Assume excess events due to WWZ signal: Cross section

$$\sigma(p\overline{p} \to WZ) = 4.5^{+3.8}_{-2.6} \text{ pb}$$

<13.3 pb at the 95% C.L.

Agrees with SM (Campbell+Ellis)

$$\sigma_{SM}^{NLO}(p\overline{p} \rightarrow WZ) = 3.7 \pm 0.1 \text{ pb}$$

95% CL limits on WWZ coupling parameters for Λ_{FF} = 1.5 TeV:

Probability of background of 0.71 • 95%CL 2-d limits for for $\Lambda_{FF} = 1.5$ TeV, with $\Delta g_1^Z = \Delta \kappa_z$:

Condition

$$\Delta g_1^Z = \Delta \kappa_z = 0 \qquad -0.53 < \lambda_z < 0.56$$

$$\lambda_z = \Delta \kappa_z = 0 \qquad -0.57 < \Delta g_1^Z < 0.76$$

$$\lambda_{z} = \Delta g_{\perp}^{z} = 0 \qquad -2.0 < \Delta \kappa_{z} < 2.4$$

$$\lambda_Z = 0, \Delta g_1^Z = \Delta \kappa_Z$$
 $-0.49 < \Delta g_1^Z = \Delta \kappa_Z < 0.66$

Limits

- Limits are model-independent (no WW_γ coupling assumptions)
- Factor of ~3 better than Run I

Anomalous ZZ_{\gamma} and Z_{\gamma\gamma} Couplings

• Effective Lagrangian

$$\begin{split} L_{Z\gamma V} &= -ie \Bigg[\Big(\frac{\boldsymbol{h}_{1}^{V} \boldsymbol{F}^{\mu\nu} + \frac{\boldsymbol{h}_{3}^{V}}{\boldsymbol{h}_{3}^{V}} \hat{\boldsymbol{F}}^{\mu\nu} \Big) \boldsymbol{Z}_{\mu} \frac{\Big(\Box + \boldsymbol{m}_{V}^{2}\Big)}{\boldsymbol{m}_{Z}^{2}} \boldsymbol{V}_{\nu} \Bigg] \\ &- ie \Bigg[\Big(\frac{\boldsymbol{h}_{2}^{V} \boldsymbol{F}^{\mu\nu} + \frac{\boldsymbol{h}_{4}^{V}}{\boldsymbol{h}_{4}^{V}} \hat{\boldsymbol{F}}^{\mu\nu} \Big) \boldsymbol{Z}^{\alpha} \frac{\Big(\Box + \boldsymbol{m}_{V}^{2}\Big)}{\boldsymbol{m}_{Z}^{4}} \partial_{\alpha} \partial_{\mu} \boldsymbol{V}_{\nu} \Bigg] \end{split}$$

Z (not in SM) $V (= \gamma \text{ or } Z)$

- h₁^V and h₂^V violate CP;
 h₃^V and h₄^V conserve CP
- All coupling parameters are zero in the SM at tree-level
- Form factor to ensure unitarity

$$a(\hat{s}) = \frac{a_0}{\left(1 + \hat{s}/\Lambda_{FF}^2\right)^n} \qquad \begin{cases} \hat{s} = \text{subprocess CM energy} \\ \Lambda_{FF} = \text{form factor scale} \end{cases}$$

$$n = 3$$
 for $h_{1,3}^V$ and $n = 4$ for $h_{2,4}^V$

 ZZ_γ couplings related to transition moments of the Z, e.g.

$$\mu_{W} = \frac{-e}{\sqrt{2}m_{Z}} \frac{E_{\gamma}^{2}}{m_{Z}^{2}} (h_{1}^{Z} - h_{2}^{Z})$$

$$Q_Z^e = \frac{2\sqrt{10e}}{m_Z^2} h_1^Z$$

Z_γ Production

- Two charged leptons
 - $p_T > 15/25 \text{ GeV (ee)}$
 - $p_T > 15/15 \text{ GeV } (\mu\mu)$
- M(II) > 30 GeV
- $\bullet \quad \text{Photon requirements same as in} \\ W_{\gamma} \text{ analysis}$
 - $E_T > 8 \text{ GeV}$
 - $\Delta R(l_{\gamma}) > 0.7$
 - $|\eta| < 1.1$
- Data sets:
 - 286 pb⁻¹ ($\mu\mu$), 324 pb⁻¹ (ee)
- Main background is from Z + jet, where jet mimics a photon

		Zº ISR		
			Drell-	Yan ISR
2	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	Т	<u> </u>
//c	⊦ DØ ∗			
e/	-	0		o *°
9	-	*		-
М _{иү} (GeV/c²)		*	o *	
	_	* ° * * * °	€	
		* 0 * * * 0 * * * * * * 0		
10 ²	>	*		
10	•			-
	· ** o	*	· eeγ	-
Z ⁰ FSR	- * *		* μμγ	
			ı	
	50	100	200	2
-		N	И _{I I} (Ge\	//c²)

70 ICD

Channel	ee	μμ
N _{obs}	138	152
$oldsymbol{N}_{bkg}$	23.6 ± 2.3	22.4 ± 3.0
$N_{Z_Y(SM)}$	95.3 ± 4.9	126.0 ± 7.8

Sample is a factor of 10 larger than in Run I

Z_γ Results

• Measured cross section for $Z\gamma$ production with $E_T^{\gamma} > 8$ GeV, $\Delta R(I\gamma) > 0.7$, and M(II) > 30 GeV:

$$\sigma(Z\gamma \to ll\gamma) = 4.2 \pm 0.4(\text{stat+syst}) \pm 0.3(\text{lum}) \text{ pb}$$

 Good agreement with SM (Baur, Han, and Ohnemus):

$$\sigma_{SM}^{NLO}(Z\gamma \to ll\gamma) = 3.9^{+0.1}_{-0.2} \text{ pb}$$

- Limits on anomalous couplings set using maximum likelihood fit to photon E_T spectrum
- 95% CL 1-d limits for $\Lambda_{FF} = 1 \text{ TeV}$:

Drell-Yan Production and A_{FB}

- Forward-backward asymmetry depends on v and a-v couplings of the quarks and leptons to the Z
 - Sensitive to sin²θ_W, but need high luminosity (see JE, J. Rha, and U. Baur, hep-ex/0011009)
- Can measure A_{FB} at cm energies above LEP II energy
 - Confirm γ*/Z interference (dominates at high cm energy)
 - Study possible new phenomena that affects A_{FB} , e.g. Z', extra dimensions,...
 - $A_{FR} \sim 0.6$ in SM
- Electron angle measured in Collins-Soper frame
- Select ee events
 - Electron $E_T > 25$ GeV, $|\eta| < 1.1$
 - At least one EM cluster must have a track match (with E/p)
 - Charge sign measurement
 - Int. lum. = 177 pb^{-1}

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

M_{ee}: Data – Monte Carlo Comparison

- 5259 candidates for M_{ee} > 70 GeV
- Monte Carlo
 - PYTHIA/PHOTOS event generator
 - M_{ee} -dependent K-factor to account for $O(\alpha_s^2)$ QCD corrections
 - Parametrized detector simulation

- Main background is from multijet events; jets mimic electrons
 - $N_{OCD} = 62.5 \pm 8.0$
- Other backgrounds much smaller
 - Main one is W+jets (11.1 ± 3.4)

John Ellison, UCR

Frontiers in Contemporary Physics III

Drell-Yan Differential Cross Section

- Differential Drell-Yan cross section obtained by correcting for
 - Kinematic acceptance
 - Geometric acceptance
 - Detector resolution
 - QED final state radiation
 - Detection efficiencies
 - Backgrounds
- Observe agreement with NNLO QCD calculations

* $O(a_s^2)$ calculation: Hamberg, van Neerven and Matsuura, Nucl. Phys. B 359, 343 (1991); van Neerven and Zijlstara, Nucl. Phys. B 382, 11 (1992)

A_{FB} Results

- Data agree with SM Monte Carlo prediction
 - Consistent with $A_{FB} \sim 0.6$ at high M_{ee}

Summary

- Studies of W_γ production
 - Model-independent limits on WW_γ couplings
 - Looking for radiation zero
- WW → dileptons production cross section is consistent with NLO SM calculation
 - Understanding is important for Higgs search
- Evidence for WZ production (trileptons)
 - Model-independent limits on WWZ couplings
- Studies of Zγ production
 - Factor of 10 more statistics than Run I
 - Limits on h₂₀,h₄₀ are the best to date
- Drell-Yan
 - Differential cross section $d\sigma/dM_{ee}$ and forward-backward asymmetry; consistent with SM predictions